Implementing a solution to the generalised word problem for the Hilden group

Stephen Tawn

22 June 2009

Saul Schleimer[4] has shown that the membership problem for the mapping class group of a handlebody inside the mapping class group of its boundry is solvable in polynomial time. We will give a slight modification of this argument to show that the membership problem for the Hilden (or wicket) group inside the braid group is solvable and implement the algorithm in MAGMA[1]. This is a literate MAGMA document [6] and contains the complete MAGMA code.

Fix n > 0 and let B_{2n} be the braid group on 2n strings.

if not assigned n then n := 3; end if;

if not assigned B then B := BRAIDGROUP(2*n); end if;

Load a fix for a bug with the **hom** constructor.

3 **load** "hom.m";

Let \mathbb{B}^3_+ be half a unit ball in \mathbb{R}^3 , ie the intersection of the unit ball \mathbb{B}^3 with the halfspace $\mathbb{R}^3_+ = \{z \ge 0\}$. Let *a* be *n* unknotted arcs in \mathbb{B}^3_+ such that the boundary of each arc lies in \mathbb{R}^2 . The Hilden group H_{2n} is the orientation preserving mapping class group of \mathbb{B}^3_+ fixing *a* setwise and $\partial \mathbb{B}^3_+ \setminus \mathbb{B}^2$ pointwise. The inclusion $i: (\mathbb{B}^2, \partial a, \partial \mathbb{B}^2) \to (\mathbb{B}^3_+, a, \partial \mathbb{B}^3_+ \setminus \mathbb{B}^2)$ induces the embedding $H_{2n} \hookrightarrow B_{2n}$. A generating set for a similar group was found by Hilden[3] and a presentation for H_{2n} was calculated independently by Brendle-Hatcher[2] and the author[5].

Pick a point P on $\partial \mathbb{B}^2$, let $F = \pi_1(\mathbb{B}^2 \setminus \partial a, P)$ be the fundamental group of $\mathbb{B}^2 \setminus \partial a$ and let $G = \pi_1(\mathbb{B}^3_+ \setminus a, P)$ be the fundamental group of $\mathbb{B}^3_+ \setminus a$. The group F is isomorphic to the free group of rank 2n and G is isomorphic to the free group of rank n. (We will represent the elements of F by straight line programs.)

4 F := SLPGROUP(2*n);

5 G := FREEGROUP(n);

MSC2000. Primary: 20–04; Secondary: 20F10, 20F36, 20F38, 57M07 *Key words and phrases.* Hilden group, generalised word problem, MAGMA The inclusion map i induces a map $\phi: F \to G$. If we pick paths x_1, x_2, \ldots, x_n and y_1, y_2, \ldots, y_n in \mathbb{B}^2 as in Figure 1 then F is generated by x_1, x_2, \ldots, x_n and y_1, y_2, \ldots, y_n , G is generated by z_1, z_2, \ldots, z_n where z_i is the image of x_i in G. The map ϕ is given by $\phi(x_i) = z_i$ and $\phi(y_i) = 1$.

Figure 1: Generators of F and G

Viewing the braid group B_{2n} as the mapping class group of the puctured disc $\mathbb{B}^2 \setminus \partial a$ we have a right action of the braid group on the free group F. If we let σ_i be a clockwise half-twist interchanging the *i*th and *i* + 1st points of ∂a then this action is given by the following.

$$\begin{aligned} x_i \cdot \sigma_{2j-1} &= \begin{cases} y_i \, x_i^{-1} & \text{for } j = i \\ x_i & \text{for } j \neq i \end{cases} \quad x_i \cdot \sigma_{2j} = \begin{cases} x_{i-1}^{-1} \, y_{i-1} & \text{for } i = j+1 \\ x_i & \text{for } i \neq j+1 \end{cases} \\ y_i \cdot \sigma_{2j-1} &= y_i \qquad \qquad y_i \cdot \sigma_{2j} = \begin{cases} y_i \, x_{i+1} \, y_i^{-1} \, x_i & \text{for } j = i \\ x_{i-1}^{-1} \, y_{i-1} \, x_i^{-1} \, y_i & \text{for } j+1 = i \end{cases} \end{aligned}$$

Rev: 572, 22 June 2009

11 odd := func< j | HOM(
$$F \to F$$
,
12 $[x[j] \to y[j] * x[j]^{-1}]$
13 $cat [x[i] \to x[i] : i in [1..n] | i ne j]$
14 $cat [y[i] \to y[i] : i in [1..n]]$
15)>;
16 even := func< j | HOM($F \to F$,
17 $[x[j+1] \to x[j]^{-1} * y[j]]$
18 $cat [x[i] \to x[i] : i in [1..n] | i ne j + 1]$
19 $cat [y[j] \to y[j] * x[j+1] * y[j]^{-1} * x[j]]$
20 $cat [y[j] \to y[j] * x[j+1] * y[j]^{-1} * x[j]]$
21 $cat [y[j] \to y[i] : i in [1..n]$
22 $[y[i] \to y[i] : i in [1..n]$
23)>;

With the inverses as follows.

$$\begin{aligned} x_i \cdot \sigma_{2j-1}^{-1} &= \begin{cases} x_i^{-1} y_i & \text{for } j = i \\ x_i & \text{for } j \neq i \end{cases} \quad x_i \cdot \sigma_{2j}^{-1} &= \begin{cases} x_i^{-1} x_{i-1}^{-1} y_{i-1} x_i & \text{for } i = j+1 \\ x_i & \text{for } i \neq j+1 \end{cases} \\ y_i \cdot \sigma_{2j-1}^{-1} &= y_i \qquad \qquad y_i \cdot \sigma_{2j}^{-1} &= \begin{cases} x_i x_{i+1} & \text{for } j = i \\ x_i^{-1} x_{i-1}^{-1} y_{i-1} y_i & \text{for } j+1 = i \end{cases} \end{aligned}$$

oddBar := func< j | HOM(
$$F \rightarrow F$$
,
 $\begin{bmatrix} x[j] \rightarrow x[j]^{-1} * y[j] \end{bmatrix}$
cat $\begin{bmatrix} x[i] \rightarrow x[i] : i \text{ in } [1..n] | i \text{ ne } j \end{bmatrix}$
cat $\begin{bmatrix} y[i] \rightarrow y[i] : i \text{ in } [1..n] \end{bmatrix}$
28) >;

We can put these automorphisms in to two sequences, $S = [\sigma_1, \ldots, \sigma_{2n-1}]$ and $\bar{S} = [\sigma_1^{-1}, \ldots, \sigma_{2n-1}^{-1}]$.

37
$$S := [$$
 ISEVEN (i) select even $(i \text{ div } 2)$

Rev: 572, 22 June 2009

```
      38
      else odd(i div 2 + 1) : i in [1..2*n-1]];
      39

      39
      SBar := [ISEVEN(i) select evenBar(i div 2)

      40
      else oddBar(i div 2 + 1) : i in [1..2*n-1]];
```

We can represent the elements of the braid group as sequences of integers. The sequence $[k_1, k_2, \ldots, k_N]$ for $k_i \in \{\pm 1, \pm 2, \ldots \pm (2n-1)\}$ represents the braid $\sigma_{k_1}\sigma_{k_2}\cdots\sigma_{k_N}$ where for negative k we define $\sigma_k = \sigma_{-k}^{-1}$. The action can now be represented as follows.

```
41 action := func < x, i \mid (i \text{ ge } 0) select S[i](x) else SBar[-i](x) >;
```

We have some basic tests to check that every thing is working correctly. We can check the inverses and the braid relations.

```
42 function testInverses()
```

```
Fprime := FREEGROUP(2*n);
43
           evaluate := hom< F \rightarrow Fprime \mid [Fprime.i : i in [1..2*n]] >;
44
           X := [ evaluate( S[j]( SBar[j]( F.i ) ) ) eq evaluate( F.i )
45
                         : i in [1...n], j in [1...n-1] ];
46
           Y := [ evaluate( SBar[i]( S[i]( F.i ) ) ) eq evaluate( F.i )
47
                         : i in [1...n], j in [1...n-1]];
48
           return & and (X cat Y);
49
       end function;
50
       function testRelations()
51
           Fprime := FREEGROUP(2*n);
52
           evaluate := hom < F \rightarrow Fprime | [Fprime.i : i in [1..2*n]] >;
53
           // Commutivity relations
54
           X := [ evaluate((A * B)(F.i)) eq evaluate((B * A)(F.i))
55
                           where A := S[i]
56
                           where B := S[k]
57
                       : i in [1...n], j in [1...k-2], k in [1...n-1]];
58
           // Braid realtaions
59
           Y := [\text{ evaluate}((A * B * A)(F.i)) \text{ eq evaluate}((B * A * B)(F.i))
60
                           where A := S[i]
61
                           where B := S[i+1]
62
                        : i in [1...n], j in [1...n-1] ];
63
           return & and (X cat Y);
64
       end function;
65
       procedure test()
66
           print "Testing inverses:\t", testInverses();
67
           print "Testing realtions:\t", testRelations();
68
       end procedure;
69
```

Theorem 1. A braid $b \in B_{2n}$ is in the Hilden group if and only if for each i = 1, ..., n we have $\phi(y_i \cdot b) = 1$.

70function inHilden(braid)71Y := y;72for i in ELEMENTTOSEQUENCE(braid) do73Y := action(Y, i);74end for;75return & and [$\phi(y) eq ID(G) : y in Y];$ 76end function;

Proof. It is clear that every element of the Hilden group will take any loop in $\mathbb{B}^2 \setminus \partial a$ that is null-homotopic in $\mathbb{B}^3_+ \setminus a$ to a loop that is null-homotopic in $\mathbb{B}^3_+ \setminus a$.

Now suppose that $b \in B_{2n}$ is a braid and that for each $i = 1, \ldots, n$ we have $\phi(y_i \cdot b) = 1$. Pick a map $\beta : \mathbb{B}^2 \to \mathbb{B}^2$ representing b and loops Y_i representing y_i . By Dehn's lemma, we can pick discs D_i and D'_i in $\mathbb{B}^3_+ \setminus a$ such that $Y_i = \partial D_i$ and $\beta(Y_i) = \partial D'_i$. The map $\beta : Y_i \to B(Y_i)$ gives a homeomorphism of the boundary of a disc, and hence can be extended to a homeomorphism of the whole disc. So we now have a homeomorphism $\beta : \mathbb{B}^2 \cup \bigcup_i D_i \to \mathbb{B}^2 \cup \bigcup_i D'_i$.

The discs $\mathbb{B}^2 \cup \bigcup_i D_i$ separate B^3_+ into *n* balls $\mathcal{B}_1, \mathcal{B}_2, \ldots, \mathcal{B}_n$ each containing one arc and one solid ball \mathcal{B} . Similarly, $\mathbb{B}^2 \cup \bigcup_i D'_i$ gives balls $\mathcal{B}'_1, \mathcal{B}'_2, \ldots, \mathcal{B}'_n$ and \mathcal{B}' .

As β is the identity on $\partial \mathbb{B}^2$ we can extend β so that it is the identity on $\partial B^3_+ \setminus \mathring{\mathbb{B}}^2$. Now β gives a homeomorphism of $\partial \mathcal{B}$ to $\partial \mathcal{B}'$ and so can be extended to a homeomorphism $\mathcal{B} \to \mathcal{B}'$.

It remains to deal with the balls \mathcal{B}_i . The map β gives a homeomorphism $\partial \mathcal{B}_i \to \partial \mathcal{B}'_i$ and this can be extended to a homeomorphism $\mathcal{B}_i \to \mathcal{B}'_i$. The image of the arc a_i under this map will be ambiant isotopic rel $\partial \mathcal{B}'_i$ to the arc in \mathcal{B}'_i . So we may assume that we choose our extension so that it takes the arc to the arc.

Hence we have extended β to a map

$$B: (\mathbb{B}^3_+, a, \partial \mathbb{B}^3_+ \setminus \check{\mathbb{B}}^2) \to (\mathbb{B}^3_+, a, \partial \mathbb{B}^3_+ \setminus \check{\mathbb{B}}^2).$$

Therefore b is in the Hilden group.

References

 W. Bosma, J. Cannon, and C. Playoust. The Magma Algebra System I: The User Language. *Journal of Symbolic Computation*, 24(3-4):235–265, 1997.

- [2] T. Brendle and A. Hatcher. Configuration spaces of rings and wickets. arXiv:0805.4354.
- [3] Hugh M. Hilden. Generators for two groups related to the braid group. *Pacific J. Math.*, 59(2):475–486, 1975.
- [4] Saul Schleimer. Polynomial-time word problems. Commen. Math. Helv., 83:741-765, 2008.
- [5] Stephen Tawn. A presentation for hilden's subgroup of the braid group. arXiv:0706.4421. to appear in Math. Res. Lett.
- [6] Don Tayloy. Literate MAGMA programming. http://www.maths.usyd. edu.au/u/don/code/Magma/magmatex.html.