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Saul Schleimer[4] has shown that the membership problem for the mapping
class group of a handlebody inside the mapping class group of its boundry
is solvable in polynomial time. We will give a slight modification of this
argument to show that the membership problem for the Hilden (or wicket)
group inside the braid group is solvable and implement the algorithm in
MAGMA[I]. This is a literate MAGMA document [6] and contains the complete
MAGMA code.

Fix n > 0 and let Bs, be the braid group on 2n strings.

1 if not assignhed n then n := 3; end if;
2 if not assigned B then B := BRAIDGROUP(2xn); end if;

Load a fix for a bug with the hom constructor.
3 load “hom.m”;

Let B? be half a unit ball in R?, ie the intersection of the unit ball B?
with the halfspace R? = {z > 0}. Let a be n unknotted arcs in B? such that
the boundary of each arc lies in R2. The Hilden group H, is the orientation
preserving mapping class group of B? fixing a setwise and 9B \ B? pointwise.
The inclusion i: (B? da, OB%) — (B, a, B \ B?) induces the embedding
Hy,, < Ba,. A generating set for a similar group was found by Hilden[3] and
a presentation for H,, was calculated independantly by Brendle-Hatcher[2]
and the author[5].

Pick a point P on OB?, let F = m(B? \ da, P) be the fundamental group
of B*\ da and let G = m (B2 \ a, P) be the fundamental group of B \ a. The
group F' is isomorphic to the free group of rank 2n and G is isomorphic to
the free group of rank n. (We will represent the elements of F' by straight
line programs.)

4 F := SLPGROUP(2xn);
5 G := FREEGROUP(n);
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The inclusion map 7 induces a map ¢: F' — G. If we pick paths x1, 2o,

S Ty
and 41,9, . ..y in B? as in Figure [1] then F is generated by z1, s, ..., and
Y1, Y2, - - - Yn, G is generated by 21, 29, ... 2, where z; is the image of z; in G.
The map ¢ is given by ¢(x;) = z; and ¢(y;) = 1.

6 x:=[Fi:iin[1..n]];

7 y=[Fmn+i:iin[1.. n]];

8 z:=[Gi:iin[1..n]];

9 ¢ =HOM( F — G, [x[]] — Zz[i] :iin[1..n]]

10 cat [ y[ii — ID(G):iin[1..n]]);

x X2 T,

P
Figure 1: Generators of F' and G
Viewing the braid group B», as the mapping class group of the puctured

disc B? \ da we have a right action of the braid group on the free group F. If

we let 0; be a clockwise half-twist interchanging the 7th and ¢ + 1st points of
Oa then this action is given by the following.

yix;t forj=i vy fori=j+1
Li- 0251 = Ti- 025 = "

x; for j #1i : fori# 541
yizipy; wy for j=i
Yi O25-1 = Yi Yir oy =y y for j+1=1
Yi
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11 odd := func< j | HOM( F — F,

12 (Xl — oyl = ] ]

13 cat [ x[i] — x[i]:iin[1..n] | inej]
14 cat [ y[i| — y[i] :iin[1..n]]

15 ) >;

16 even := func< j | HOM( F — F,
]

17 [ x[j+1] — x[] 7" = y[j] ]

18 cat [ x[i| — x[i] :iin[1..n]|inej+ 1]
19 cat [yl — ylil * xlH1] = Y[ 7" # x|

20 cat [ y[j+1] — x| Tey[lsx[j+1] " Txy[i+1] ]
21 cat [ y[i| — y[i] :iin[1..n]

22 | (j ne i) and (j+1 ne i)

23 ) >

With the inverses as follows.

, vty for j=i L w e g fori=j+1
Ti- 0951 = ) . X095 = . .
x; for j #i X fori#j+1
i Tixq for j =1
Yi - Oyt = Vi yi- 0y = a7 w gy for j+ 1=
Yi
24 oddBar := func< j | HOM( F — F,
25 [ Xl — XU * i ]
26 cat [ x[i] — x[i] :iin[1..n] | inej]
27 cat [ ylil — yli]:iin[1..n]]

28 )>;

29 evenBar := func< j | HOM( F — F,
30 [ x[H1] = G177 (] T ] x| ]

31 cat [ x[i) — x[i]:iin[1..n]|inej+ 1]
32 cat [ y[j| — x|j] = x[j+1] ]

3 cat [ yli+1] — xlj+1] ™ Txl] T Leyleylj+1] |
34 cat [ y[i| — y[i] :iin[1..n]

35 | (j ne i) and (j+1 ne i)]

36 ) >,

We can put these automorphisms in to two sequences, S = [01,...,09,_1]
and S =[o7, ..., 05 ]

37 S := [ ISEVEN(/) select even(i div 2)
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38 else odd(i div2 + 1) : jin [1..2xn—1] |;
39 SBar := [ ISEVEN(/) select evenBar(i div 2)
40 else oddBar(i div 2 + 1) : iin [1..2xn—1] |;

We can represent the elements of the braid group as sequences of integers.
The sequence [ky, ko, ..., ky] for k; € {£1,+2,... 4+ (2n — 1)} represents the
braid oy, o, - - - 0%, Where for negative k we define oy, = U:i. The action can
now be represented as follows.

4 action := func<x, i | (i ge 0) select S[i](x) else SBar[—i](x)>;

We have some basic tests to check that every thing is working correctly.
We can check the inverses and the braid relations.

42 function testlnverses|()

43 Fprime := FREEGROUP(2xn);

44 evaluate := hom< F — Fprime | [ Fprime.i : i in [1..2xn] | >;
45 X := [ evaluate( S[j|( SBarlj]( F.i) ) ) eq evaluate( F.i )

46 :iin[1..]jm[1 .n—1] |;

a7 Y := [ evaluate( SBarlj|( S[j]( F.i ) ) ) eq evaluate( F.i )

48 ciin 1. ]/m[ .n—1] |;

49 return &and (X cat Y);

50 end function;

51 function testRelations()

52 Fprime := FREEGROUP(2xn);

53 evaluate := hom< F — Fprime | [ Fprime.i : i in [1..2xn] | >;
54 // Commutivity relations

55 X := [ evaluate((A * B)(F.i)) eq evaluate((B * A)(F.i))

56 where A := SJj

57 where B := Sk

58 ciin[1..n], jin [1..k=2], kin [1..n—1] |;

59 // Braid realtaions

60 Y := [ evaluate((A x B « A)(F.i)) eq evaluate((B x A x B)(F.i))
61 where A := SJj|

62 where B := S[ 1]

63 ciin[1..n], jin [1..n—1] |;

64 return &and (X cat Y),

65 end function;

66 procedure test()

67 print “Testing inverses:\t”, testlnverses();

68 print “Testing realtions:\t”, testRelations();

69 end procedure;
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Theorem 1. A braid b € By, is in the Hilden group if and only if for each
i=1,...,n we have ¢(y; - b) = 1.

70 function inHilden (braid)

71 Y =y;

72 for i in ELEMENTTOSEQUENCE(braid) do
73 Y := action(Y, i);

74 end for;

75 return &and | ¢(y) eq ID(G) : y in Y |;
76 end function;

Proof. Tt is clear that every element of the Hilden group will take any loop in
B? \ da that is null-homotopic in B? \ a to a loop that is null-homotopic in
B3 \ a.

Now suppose that b € Bs, is a braid and that for each i = 1,...,n we have
é(y; - b) = 1. Pick a map 3:B?* — B? representing b and loops Y; representing
y;. By Dehn’s lemma, we can pick discs D; and D; in IB%i”r\a such that Y; = 0D;
and 3(Y;) = 0D). The map (:Y; — B(Y;) gives a homeomorphism of the
boundary of a disc, and hence can be extended to a homeomorphims of the
whole disc. So we now have a homeomorphism 3:B? U |J, D; — B> U, D..

The discs ]B%QUUZ. D; separate Bi into n balls By, Bs, . . ., B,, each containing
one arc and one solid ball B. Similarly, B* U |J; D} gives balls By, BS, ..., B,
and B'.

As 3 is the identity on 0B? we can extend 3 so that it is the identity
on B3 \B2 Now [ gives a homeomorphism of 9B to 0B’ and so can be
extended to a homeomorphism B — B'.

It remains to deal with the balls B;. The map [ gives a homeomorphism
0B; — 0B and this can be extended to a homeomorphism B; — B;. The
image of the arc a; under this map will be ambiant isotopic rel B, to the arc
in B}. So we may assume that we choose our extension so that it takes the
arc to the arc.

Hence we have extended (3 to a map

B:(B%,a,0B \ B?) — (B%,q,0B° \ B?).

Therefore b is in the Hilden group. O]
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