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Background

The positive braid monoid is the monoid given by the following
presentation:

B+
n =

〈
σ1, . . . , σn−1

∣∣∣∣∣ σiσj = σjσi (1 6 i < j < n)

σiσi+1σi = σi+1σiσi+1 (1 6 i < n − 1)

〉+

There’s a natural map π :B+
n → Sn .

Can construct a section r :Sn → B+
n , i.e. π ◦ r = 1Sn , by taking a

shortest word for an element in Sn and reinterpreting it as a word in
B+
n .

I For x ∈ B+
n , x ∈ Im(r) if and only if each string crosses at most once.

∆ := r(longest word).

D := Im(r) is the set of simple braids.

A := {σ1, σ2, . . . , σn−1} is the set of atoms.
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Background
Proposition. B+

n =
〈
D
∣∣ r(xy) = r(x )r(y) if l(xy) = l(x ) + l(y)

〉+

Prefix order: u 4 w iff w = uv for some v .
Suffix order: w < u iff w = vu for some v .

Proposition. {s : s 4 ∆} = D = {s : ∆ < s}
Proposition. The following are all lattice orders:

(B+
n ,4) (B+

n ,<)
(D,4) (D,<)

Garside/Greedy normal form: NF (x ) = x1x2 · · · xk such that

xi = ∆ ∧ xixi+1 · · · xk

Proposition. NF (x ) = ∆kx1x2 · · · xl with each xi 6= 1,∆.

k is the infimum
l is the canonical length
k + l is the supremum
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Random braids
There are two natural probability distributions on the set of elements of
length k :

Uniformly random words Pick k atoms with uniform probability.

Uniformly random braids Pick each element with uniform probability.

Write Wordk and URBk for the respective probability measures.

These distributions are very different, for example, there are lots of
words representing ∆ but only one for σki .

We have maps defined by

λi(x ) =

{
xi for i = 1, . . . , l

1 otherwise
and ρi(x ) =

{
xl+1−i for i = 1, . . . , l

1 otherwise

where NF (x ) = ∆kx1x2 · · · xl . This gives sequences of induced probability
measures

λi∗(Wordk ), λi∗(URBk ), ρi∗(Wordk ), ρi∗(URBk )

on the symmetric group.
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Invariants

The symmetric group is big. So, for larger n the sample size required to get
a good picture of the induced distributions would be impossibly large. To
overcome this we use numerical invariants to investigate the induced
distributions.

word length, l .

Starting set:
S (x ) := {σi ∈ A : σi 4 x}

Finishing set:
F (x ) := {σi ∈ A : x < σi}
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Experiments

We constructed and analysed samples of 9999 elements of B+
n for each

combination of

n ∈ {5, 10, 15, 20, 25, 30}
k ∈ {4, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 512, 1024, 2048}

for both the Wordk and URBk distributions.

For Wordk we also analysed samples with a word length of 4096.
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Mean factor length
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Mean factor length inside stable region.
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Relative frequency of a generator being in the starting set
n = 30, word length = 2048
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Conjecture (Stable region)

Consider the braid monoid B+
n for any fixed n ∈ N. For µk = Wordk ,

respectively µk = URBk , and for each i , the sequences of probability
measures λi∗(µk ) and ρi∗(µk ) on the set of simple elements converge as
k →∞. Moreover, there exists a probability measure Σ on the set of simple
elements and constants C and D such that one has

∀i > C λi∗(µk )→ Σ as k →∞

and

∀i > D ρi∗(µk )→ Σ as k →∞ .
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Normal form

For all x ∈ D we have x 4 ∆ hence there exists ∂x ∈ D such that
x∂x = ∆.

Suppose xy is in normal form, in other words ∆ ∧ xy = x . Cancelling x we
see that ∂x ∧ y = 1.

Proposition. A word x1x2 · · · xk is in normal form if and only if for all i ,
∂xi ∧ xi+1 = 1.

Corollary. The language

D◦ := {x ∈ D : x 6= 1,∆}

L := {x1x2 · · · xk ∈ D
◦

in normal form}

is a subword-closed regular language.

Write L(k) for the subset of words of length k .
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Computing normal form of x1x2 · · · xk
The normal form of a word x1x2 · · · xk can be computed using the re-write
rule xy → (xm)(m−1y) where m = ∂x ∧ y .

Recursively put x1x2 · · · xk−1 into normal form

Work from end re-writing successive pairs
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Penetration distance

The normal form of a random word can be though of as a random process.

Definition

For two braids x and y the penetration distance pd(x , y) for the product xy
is the number of simple factors at the end of the normal form of x which
undergo a non-trivial change in the normal form of the product.

pd(x , y) = cl(x )−max
{
i ∈ {0, . . . , cl(x )} :

x∆− inf(x) ∧∆i = xy∆− inf(xy) ∧∆i
}

The stable region conjecture suggest that the expected value of pd is
bounded.
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Mean penetration distance for each generator
n = 30, word length = 2048
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Bounded penetration distance conjecture

Conjecture (Uniformly bounded expected penetration distance)

Consider the braid monoid B+
n for fixed n ∈ N, let µA be the uniform

probability measure on the set of atoms and, for k ∈ N, let
µk ∈ {Wordk ,URBk}. Then there exists C such that for all k ∈ N, we have

Eµk×µA [pd] < C .

Corollary. There’s a linear expected time algorithm to compute the
normal form of a random word

Tawn (UWS) Normal forms of random braids AustMS 2013 16 / 27



Bounded penetration distance conjecture

Conjecture (Uniformly bounded expected penetration distance)

Consider the braid monoid B+
n for fixed n ∈ N, let µA be the uniform

probability measure on the set of atoms and, for k ∈ N, let
µk ∈ {Wordk ,URBk}. Then there exists C such that for all k ∈ N, we have

Eµk×µA [pd] < C .

Corollary. There’s a linear expected time algorithm to compute the
normal form of a random word

Tawn (UWS) Normal forms of random braids AustMS 2013 16 / 27



Penetration sequences

(
,

)(
,

)(
,

)(
,

)

Tawn (UWS) Normal forms of random braids AustMS 2013 17 / 27



Penetration sequences

(
,

)(
,

)(
,

)(
,

)

Tawn (UWS) Normal forms of random braids AustMS 2013 17 / 27



Penetration sequences

(
,

)(
,

)(
,

)

(
,

)

Tawn (UWS) Normal forms of random braids AustMS 2013 17 / 27



Penetration sequences

(
,

)(
,

)(
,

)

(
,

)

Tawn (UWS) Normal forms of random braids AustMS 2013 17 / 27



Penetration sequences

(
,

)(
,

)

(
,

)(
,

)

Tawn (UWS) Normal forms of random braids AustMS 2013 17 / 27



Penetration sequences

(
,

)(
,

)

(
,

)(
,

)

Tawn (UWS) Normal forms of random braids AustMS 2013 17 / 27



Penetration sequences

(
,

)

(
,

)(
,

)(
,

)

Tawn (UWS) Normal forms of random braids AustMS 2013 17 / 27



Penetration sequences

(
,

)

(
,

)(
,

)(
,

)

Tawn (UWS) Normal forms of random braids AustMS 2013 17 / 27



Penetration sequences

(
,

)(
,

)(
,

)(
,

)

Tawn (UWS) Normal forms of random braids AustMS 2013 17 / 27



Penetration sequences

(
,

)(
,

)(
,

)(
,

)

Tawn (UWS) Normal forms of random braids AustMS 2013 17 / 27



Penetration sequences

(
,

)(
,

)

(
,

)(
,

)

Tawn (UWS) Normal forms of random braids AustMS 2013 17 / 27



Penetration sequences

Definition

A word (sk ,mk ) · · · (s2,m2)(s1,m1) ∈
(
D◦×D◦

)∗
is a penetration sequence

if, for all i , the following hold:

m1 4 ∂s1 i < k =⇒ simi 6= ∆

i < k =⇒ ∂si+1 ∧ si = 1 i < k =⇒ mi+1 = ∂si+1 ∧ simi

Let PSeqk denote the set of all penetration sequences of length k .

Lemma. PSeq∗ is a suffix-closed regular language

Proposition

There exist constants α, β, p, q > 0 such that

|PSeqk | ∈ Θ(kpαk ) and |L(k)| ∈ Θ(kqβk ).

α and β are the exponential growth rates of |PSeqk | and |L(k)|.
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Criterion for bounded expected pd

Theorem

Let νk be the uniform probability measure on L(k). If α < β then the
expected value Eνk×µA [pd] of the penetration distance with respect to
νk × µA is uniformly bounded (that is, the bound does not depend on k).

Sketch proof.

Consider
Xi ,k :=

{
(x , a) ∈ L(k) ×A : pd(x , a) = i

}
Then

Eνk×µA [pd] =
k∑

i=0

i
|Xi ,k |

|L(k)| · |A|

Taking the maximal penetration sequence gives an injective map

Xi ,k → L(k−i) × PSeqi
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Criterion for bounded expected pd (cont.)

,
7−→

,

(
,

)(
,

)

Sketch proof (cont.)

Hence

Eνk×µA [pd] 6
k∑

i=0

i
|L(k−i)| · |PSeqi |
|L(k)| · |A|

≈
k∑

i=0

i
(k − i)qβk−i · ipαi

kqβk

6
k∑

i=0

ip+1

(
α

β

)i
→ C <∞ as k →∞
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Criterion for unbounded expected pd

Theorem

Let νk be the uniform probability measure on L(k). If Γ \ {1Γ} is strongly
connected and α = β holds, then the expected value Eνk×µA [pd] of the
penetration distance with respect to νk × µA tends to ∞.

lim
k→∞

Eνk×µA [pd] =∞

Γ is the acceptor for the language L of normal forms.
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Generalizations

All of the above can be generalised to spherical Artin monoids

π :A+ →W
r :W → A+

∆ = r(longest word)
r(xy) = r(x )r(y) if l(xy) = l(x ) + l(y)

. . .

and further generalised to Garside monoids.
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Computing growth rates

For small n, the exponential growth rates α and β can be computed
exactly.

I largest eigenvalue of the transition matrix of the acceptor graph

For (slightly) larger n, there’s an algorithm which can compute α and
β to within a prescribed error bound.
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Growth rates for type A
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Growth rates for types B and E
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Growth rates for type D
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Growth rates for types F and H
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